Un peruano demuestra un problema matemático irresuelto por 271 años


El matemático peruano Harald Andrés Helfgott logró demostrar la conjetura débil de Goldbach, un problema de teoría de números que había permanecido irresuelto durante 271 años y uno de los más difíciles de las matemáticas.

Christian Goldbach sugirió en 1742 que: "Todo número impar mayor que 5 puede expresarse como suma de tres números primos". Una afirmación que se convirtió en un dolor de cabeza para los mejores matemáticos de los tres últimos siglos. Fueron Hardy y Littlewood, en 1923, y de Vinogradov, en 1937, quienes dieron los primeros pasos para su solución.

Helfgott, nacido en Lima en 1977 y actualmente residente en París e investigador en el CNRS (Centro Nacional para la Investigación Científica, publicó dos trabajos reivindicando la mejora de las estimaciones de los arcos mayores y menores lo suficientemente para demostrar incondicionalmente la conjetura débil de Goldbach.

Por otro lado, esta investigación difícilmente ayudará a la demostración de la Conjetura (fuerte) de Goldbach, considerada por algunos como el problema más difícil en la historia de esta ciencia y que según el propio Helfgott "podría no resolverse en nuestras vidas".

Durante su brillante carrera científica (cursó estudios en las universidades de Princeton y Yale, entre otras) el matemático ha recibido distinciones como el Premio Philip Leverhulme; el Premio Whitehead, otorgado por la Sociedad Matemática de Londres, y el Premio Adams de la Universidad de Cambridge.

Si quiere leer el trabajo completo de 133 páginas de la demostración en inglés, puede pinchar en el siguiente enlace.

Fuente: Actualidad.rt.com